
© 2017 IBM Corporation

Hyperledger Fabric v1:

Rethinking Permissioned Blockchains

Blockchain: du Bitcoin au Smart Contract
4 Mai 2017

Marko Vukolić, IBM Research - Zurich

May 4, 2017

© 2015 IBM Corporation© 2017 IBM Corporation

What is a Blockchain?

• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of transactions

2

#234 #235 #236…#1
#0

Genesis
block

Node A Node E

Node B Node D

Node C

Node F

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Consensus
protocol
ensures ledger
replicas are
identical*

datastructure

Network of
untrusted nodes

© 2015 IBM Corporation© 2017 IBM Corporation

This talk

How a set of seemingly simple functional requirements

implied blockchain design overhaul?

Hyperledger Fabric v1

3

© 2015 IBM Corporation© 2017 IBM Corporation4
https://www.hyperledger.org/

https://github.com/hyperledger

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages

 Modular/pluggable consensus

5

©2016 IBM Corporation

Blockchain Architecture
101

© 2015 IBM Corporation© 2017 IBM Corporation

Permissionless Blockchains

Step 1: Block “mining” (PoW Consensus)

Step 2: Block #237 propagation to the network (gossip)

Step 3: Block Validation / Smart Contract Execution (every miner)

• Validating transactions in the payload (executing smart contracts)

• Verifying hash of Block #237 < DIFFICULTY

7

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

find nonces such that
hash(Block#237) =SHA256(A||B||C||D) < DIFFICULTY

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

Miner of block #237

Miner of block #237

ORDER using Consensus  EXECUTE
(input tx) (tx against smart contracts)

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned blockchains

 Nodes (participants) need a permission (and identity) to participate

in the blockchain network

 Motivation: business applications of blockchain and distributed

ledger technology (DLT)

─ Participant often need ability to identify other participants

─ Participants do not necessarily trust each other

 Examples: Chain, Kadena, Tendermint, Ripple, Symbiont, and…

Hyperledger Fabric

8

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned vs permissionless blockchains

 Membership management

─ Pemissioneless: none

─ Permissioned: node identities and membership need to be managed

 Consensus (system) performance

─ Permissionless (PoW consensus): high latency, low throughput

─ Permissioned (BFT consensus protocols): low latency, high throughput

9

Node A (leader)

Node B

Node C

Node D

Tx1

Tx2

Tx3

Tx4

Seq #24
View no

… #21 #22 #23 Tx1

Tx2

Tx3

Tx4

Seq #24
View noexample:

PBFT [Castro/Liskov02]

ORDER using Consensus  EXECUTE
(input tx) (tx against smart contracts)

© 2015 IBM Corporation© 2017 IBM Corporation

What are the issues with

ORDER  EXECUTE architecture

(with HLF requirements in mind)?

10

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned blockchain architecture issues

 Sequential execution of smart contracts

─ long execution latency blocks other smart contracts, hampers performance

─ DoS smart contracts (e.g., `while true { }`)

─ How permissioneless blockchains cope with it:

• Gas (paying for every step of computation)

• Tied to a cryptocurrency

 Non-determinism

─ Smart-contracts must be deterministic (otherwise – state forks)

─ How permissioneless blockchains cope with it:

• Enforcing determinism: Solidity DSL, Ethereum VM

• Cannot code smart-contracts in developers favorite general-purpose language

(Java, golang, etc)

 Confidentiality of execution: all nodes execute all smart contracts

 Inflexible consensus: Consensus protocols are hard-coded

11

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages

 Modular/pluggable consensus

12

Satisfying these requirements required
a complete overhaul of the permissioned blockchain design!

end result

Hyperledger Fabric v1

©2016 IBM Corporation

Hyperledger Fabric v1
Architecture

http://github.com/hyperledger/fabric

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 architecture in one slide

 Existing blockchains’ architecture

ORDER using Consensus  EXECUTE

(input tx) (tx against smart contracts)

 Hyperledger Fabric v1 architecture

EXECUTE  ORDER using Consensus  VALIDATE

(tx against smart contracts) (versioned state updates) (versions, execution attestations)

14

© 2015 IBM Corporation© 2017 IBM Corporation

Step #1: Execute first

 Goals

─ Paralelize execution (addresses sequential execution bottleneck)

─ Partition execution (addresses confidentiality of execution)

─ Remove non-determinism (prevent state forks due to non-determinism)

 Hyperledger Fabric v1 approach

─ A subset of nodes called endorsers executes chaincode**

• Endorsers produce and sign versioned state updates

─ Client library orchestrates collection of execution results

** HLF:chaincode ~ Ethereum:smart contract

15

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

1

2

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

© 2015 IBM Corporation© 2017 IBM Corporation

Step 2: Order using Consensus

 Goal

─ Order versioned state-updates to prevent inconsistencies/double spending

─ Enforce consensus modularity

 Hyperledger Fabric v1 approach

─ Make consensus modular

─ Introduce ordering nodes (orderers)

─ Order after Execute  prevents inconsistencies due to non-determinism

17

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

broadcast(endorsement)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

broadcast(endorsement)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

© 2015 IBM Corporation© 2017 IBM Corporation

HLF Consensus

 HLF v1 consensus (ordering service) implementations
─ Byzantine FT (SimpleBFT, variant of v0.6 PBFT, development in progress)

─ Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)

─ Centralized! (SOLO, mostly for development and testing)

 Many more to come
─ BFT-SMaRt (University of Lisbon), Honeybadger BFT (UIUC), XFT (IBM)

Perhaps also your favorite blockchain consensus?

20

© 2015 IBM Corporation© 2017 IBM Corporation

Step #3: Validate after Ordering

 Goal

─ Efficiently validate execution results from (potentially untrusted) endorsers

─ Validate “freshness” of state updates (prevents asset double-spending)

 Hyperledger Fabric v1 approach

─ All peers verify versions of state updates coming out of consensus

─ All peers validate endorsers’ signatures against endorsement policy

21

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement
(to satisfy endorsement
Policy (EP))

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Validate(readset)
Validate(endorsement,

chaincodeID,
EP)

Validate(readset)
Validate(endorsement,

chaincodeID,
EP)

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 Endorsement Policies

 Deterministic (!) programs used for validation

 Executed by all peers post-consensus

 Examples

─ K out of N chaincode endorsers need to endorse a tx

─ Alice OR (Bob AND Charlie) need to endorse a tx

 Cannot be specified by chaincode developers

 Can be parametrized by chaincode developers

23

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 Endorsement Policies and Execution Flow

 Endorsement Policy can, in principle, implement arbitrary program

Hybrid execution model

EXECUTE  ORDER  VALIDATE approach of HLF v1

Can be used to split execution in two

EXECUTE (chaincode)  can be non-deterministic

VALIDATE(endorsement policy)  must be deterministic

24

© 2015 IBM Corporation© 2017 IBM Corporation

What about DoS, resource exhaustion?

 HLF v1 transaction flow is resilient* to non-determinism

 Hence, endorsers can apply local policies (non-deterministically) to

decide when to abandon the execution of chaincode

─ No need for gas/cryptocurrency!

* EXECUTEORDERVALIDATE:

non-deterministic tx are not guaranteed to be live

ORDEREXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)

25

©2016 IBM Corporation

Thank You!

