Marko Vukolié, IBM Researc h - Zurich
May 4, 2017

Hyperledger Fabric v1:

What is a Blockchain?

« A chain (sequence, typically a hash chain) of blocks of transactions
- Each block consists of a number of transactions

#0
Genesis «—1 #1 #2341¢—#235/«—#236 datastructure
Consensus block e
protocol
ensures ledger
replicas are
identical*

Node E
Ledger

Ledger

Network of
untrusted nodes

© 2017 IBM Corporation

This talk

How a set of seemingly simple functional requirements

Implied blockchain design overhaul?

Hyperledger Fabric v1

3 © 2017 IBM Corporation

PREMIER MEMBERS

>
accenture

High performance. Delivered.

[e®)
FUJITSU

JPMorgan

@, AIRBUS %ﬁ;‘s 3 CME Group

DAIMLER & Digital Asset DT::

HITACHI

Inspire the Next

(intel)'

¥

R

L

THE

LINUX

FOUNDATION

HYPERLEDGER PROJECT

GENERAL MEMBERS
Prsvanio 4, ©awores ,‘lxz‘n' BBVA @nﬂ,w.w
@ bolioe © BITMARK b;1'q¢_- 3 Dblod®© stodkstrean

BLOCKCHAIN

ES Broadridge

bloQ & =
BNY MELLON
cansones: - §1EE §I

JBlEEE @anan

CLS i) coinplug g) L @:
-1 WAL Consensus Base
Biaerl ..:"=. % FACTOM U
P Gem
33 onx HASHED S'A H[NDS\W
.CN HUAWE! -/
InfuIt ° RTINS
kubigue s LLibra |loyyal
st o, A >
=== MiRACL N =

M®bubi®k s
.|Il-'|t;- clgudsoft
© consensvs Cuscal
o, guardtime =
pmunn 6B
intellect
KSD' i >koscom
A Lykke MacHve
ML HRERNee

M BT “wec @nNeTki NEXC Nokia

{>Paxos [ains

rbloc NT:_I'IJ"ETE

onchain {285

P g

A Radariin @) redat A) SANY @ SBERBANK sscuns@
SAMSUNG SDS
apP O B -
(CRACRCT N "1 o Skr —
\ / :ﬁso ZRm y .
STATE STREET. 5 teg) creek

...............

sermam £ REM @

ASSOCIATE MEMBERS
N " o

¢ ColoredCoins = == o s - @estmm

T ‘s
i INCIT SO

https://github.com/hyperledger

https://www.hyperledger.org/

© 2017 IBM Corporation

Hyperledger Fabric — key requirements

= No native cryptocurrency
= Ability to code smart-contracts in general-purpose languages

» Modular/pluggable consensus

5 © 2017 IBM Corporation

Blockchain Architecture
101

Permissionless Blockchains

find nonces such that

hash(Block#237) =SHA256(A||B||C||D) < DIFFICULTY

Step 1: Block “mining” (PoW Consensus)
]

Transactions
(payload)

A =hash of block #236
B = Root hash of
Merkle tree of tx

A

. #2341« #235 +—#236

Miner of block #237
Step 2: Block #237 propagation to the network (gossip)

Miner of block #237

hashes
C =nonce 1
D = nonce 2

Block #237

Step 3: Block Validation / Smart Contract Execution (every miner)

 Validating transactions in the payload (executing smart contracts)
« Verifying hash of Block #237 < DIFFICULTY

. - |H234 /< #235

#236

Transactions
(payload)

A =hash of block #236
B = Root hash of
Merkle tree of tx

A

A

> r
e thereum
ORDER using Consensus - EXECUTE

hashes
C =nonce 1
D = nonce 2

Block #237

(input tx) (tx against smart contracts)

© 2017 IBM Corporation

Permissioned blockchains

» Nodes (participants) need a permission (and identity) to participate
In the blockchain network

= Motivation: business applications of blockchain and distributed
ledger technology (DLT)
— Participant often need ability to identify other participants
— Participants do not necessarily trust each other

» Examples: Chain, Kadena, Tendermint, Ripple, Symbiont, and...

Hyperledger Fabric

8 © 2017 IBM Corporation

Permissioned vs permissionless blockchains

= Membership management

— Pemissioneless: none
— Permissioned: node identities and membership need to be managed

= Consensus (system) performance
— Permissionless (PoW consensus): high latency, low throughput
— Permissioned (BFT consensus protocols): low latency, high throughput

== | ORDER using Consensus > EXECUTE
g% (input tx) (tx against smart contracts)
Tx4
Node A (leader)
Node B
Node C
Node D

A

example: View no
PBFT [Castro/Liskov02] -y #21 #22 #23 ﬁ%
Tx4

9 © 2017 IBM Corporation

What are the issues with
ORDER = EXECUTE architecture

(with HLF requirements in mind)?

Permissioned blockchain architecture issues

11

Sequential execution of smart contracts
— long execution latency blocks other smart contracts, hampers performance
— DoS smart contracts (e.g., ‘while true {}")

— How permissioneless blockchains cope with it: Q
* (Gas (paying for every step of computation)
» Tied to a cryptocurrency

Non-determinism
— Smart-contracts must be deterministic (otherwise — state forks)

— How permissioneless blockchains cope with it:
 Enforcing determinism: Solidity DSL, Ethereum VM @

« Cannot code smart-contracts in developers favorite general-purpose language
(Java, golang, etc)

Confidentiality of execution: all nodes execute all smart contracts

Inflexible consensus: Consensus protocols are hard-coded

© 2017 IBM Corporation

Hyperledger Fabric — key requirements

= No native cryptocurrency @
= Ability to code smart-contracts in general-purpose languages @
= Modular/pluggable consensus @

Satisfying these requirements required
a complete overhaul of the permissioned blockchain design!

end result

Hyperledger Fabric v1

12 © 2017 IBM Corporation

Hyperledger Fabric v1
Architecture

http://github.com/hyperledger/fabric

= h

ka' HYPERLEDGER PROJECT

HLF v1 architecture in one slide

= Existing blockchains’ architecture

ORDER using Consensus - EXECUTE
(input tx) (tx against smart contracts)

14 © 2017 IBM Corporation

Step #1:. Execute first

= Goals
— Paralelize execution (addresses sequential execution bottleneck)
— Partition execution (addresses confidentiality of execution)
— Remove non-determinism (prevent state forks due to non-determinism)

= Hyperledger Fabric vl approach
— A subset of nodes called endorsers executes chaincode**
« Endorsers produce and sign versioned state updates
— Client library orchestrates collection of execution results

** HLF:chaincode ~ Ethereum:smart contract

15 © 2017 IBM Corporation

Hyperledger Fabric vl Transaction flow

@ <PROPOSE, clientIlD, chaincodelD, txPayload, timestamp, clientSig>

@ <TX-ENDORSED, peerlD, txID, chaincodel}] readset, writeset>

€

Collect “sufficient” no. of / Simulate/Execute tx
TX-ENDORSED { ® Sign TX-ENDORSED

Msgs into an endorsement | | _
<«

endorsing endorsing endorsing

client (C) peer (EP1) peer (EP2) peer (EP3)

© 2017 IBM Corporation

Step 2: Order using Consensus

= Goal
— Order versioned state-updates to prevent inconsistencies/double spending

— Enforce consensus modularity

= Hyperledger Fabric v1 approach
— Make consensus modular

— Introduce ordering nodes (orderers)
— Order after Execute - prevents inconsistencies due to non-determinism

17 © 2017 IBM Corporation

Hyperledger Fabric vl Transaction flow Total order semantics (HLE v1)

@ <PROPOSE, clientIlD, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD(Teadset, writeset> (4) DELIVER(seqno,prevhash,block)

Collect “sufficient” no. of / Simulate/Execute tx
TX-ENDORSED { ® Sign TX-ENDORSED

Msgs into an endorsement | | _
<

broadcast(endorsement) @

(Snsuasuod) 321AI3S SulIBpIO

endorsing endorsing endorsing || |

client (C) peer (EP1) peer (EP2) peer (EP3)

orderers

© 2017 IBM Corporation

Hyperledger Fabric vl Transaction flow Total order semantics (HLE v1)

@ <PROPOSE, clientIlD, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD, readset, writeset> (4) DELIVER(seqno,prevhash,block)

Collect “sufficient” no. of / Simulate/Execute tx
TX-ENDORSED { ® Sign TX-ENDORSED

Msgs into an endorsement | | _
<«

(Snsuasuod) 321AI3S SulIBpIO

broadcast(endorsement) @
«-------"< A//
endorsing endorsing endorsing || | (committing) (committing)

client (€) peer (EP1) peer (EP2) peer (EP3) peer (CP4) peer (CP5)

orderers

© 2017 IBM Corporation

HLF Consensus

= HLF vl consensus (ordering service) implementations
— Byzantine FT (SimpleBFT, variant of v0.6 PBFT, development in progress)
— Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)
— Centralized! (SOLO, mostly for development and testing)

= Many more to come
— BFT-SMaRt (University of Lisbon), Honeybadger BFT (UIUC), XFT (IBM)

[Perhaps also your favorite blockchain consensus? }

20 © 2017 IBM Corporation

Step #3: Validate after Ordering

= Goal
— Efficiently validate execution results from (potentially untrusted) endorsers
— Validate “freshness” of state updates (prevents asset double-spending)

» Hyperledger Fabric vl approach
— All peers verify versions of state updates coming out of consensus
— All peers validate endorsers’ signatures against endorsement policy

21 © 2017 IBM Corporation

Hyperledger Fabric vl Transaction flow Total order semantics (HLE v1)

@ <PROPOSE, clientIlD, chaincodelD, txPayload, timestamp, clientSig> @ BROADCAST (blob)

(2) <TX-ENDORSED, peerlD, txID, chaincodelD, readset, writeset> (4) DELIVER(seqno,prevhash,block)

Collect “sufficient” no. of / Simulate/Execute tx
e DooED Sign TX-ENDORSED
Msgs into an endorsemen @ ign 1Xx-

(to satisfy endorsement
Policy (EP))

a
<«

®

Validate(readset)
Validate(endorsement, !
. Validate(endorsement,
chaincodelD, chaincodelD,
EP) EP)

Validate(readset)

(Snsuasuod) 321AI3S SulIBpIO

endorsing endorsing endorsing ||| (committing) (committing)

client (€) peer (EP1) peer (EP2) peer (EP3) peer (CP4) peer (CP5)

orderers

© 2017 IBM Corporation

HLF vl Endorsement Policies

= Deterministic (!) programs used for validation

» Executed by all peers post-consensus

= Examples
— K out of N chaincode endorsers need to endorse a tx
— Alice OR (Bob AND Charlie) need to endorse a tx

= Cannot be specified by chaincode developers

= Can be parametrized by chaincode developers

23

© 2017 IBM Corporation

HLF vl Endorsement Policies and Execution Flow

» Endorsement Policy can, in principle, implement arbitrary program

Hybrid execution model
EXECUTE = ORDER - VALIDATE approach of HLF v1
Can be used to split execution in two
EXECUTE (chaincode) < can be non-deterministic

VALIDATE(endorsement policy) = must be deterministic

24 © 2017 IBM Corporation

What about DoS, resource exhaustion?

= HLF v1 transaction flow is resilient* to non-determinism

= Hence, endorsers can apply local policies (non-deterministically) to
decide when to abandon the execution of chaincode
— No need for gas/cryptocurrency!

* EXECUTE->ORDER->VALIDATE:
non-deterministic tx are not guaranteed to be live
ORDER->EXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)

25 © 2017 IBM Corporation

Thank You!

